Quantum Technologies Laboratory

The project will develop new concepts for optical communication systems building on recent advances in quantum information science and quantum optics. The central idea stems from reformulating the communication task as the identification problem for non-orthogonal quantum states describing individual inputs, rather than transmitting information in classical variables, such as the intensity or the phase, whose conventional measurements are bounded by standard quantum limits. This general approach, when implemented using the state-of-the-art methods for optical signal processing and characterization at the quantum level, opens up new ways to attain sub-shot-noise error rates as well as the superadditivity of accessible information through joint detection. The pursuit of these objectives will be complemented by the development of realistic models for optical communication channels and the general analysis of resources in communication protocols.

 

 

 

Prof. Konrad Banaszek
email: k.banaszek@cent.uw.edu.pl
phone: +48 22 55 43750
room: 02.107

Prof. Konrad Banaszek is currently the director of the Centre of Quantum Optical Technologies funded by the International Research Agenda Programme operated by the Foundation for Polish Science and hosted by the Centre of New Technologies, University of Warsaw. After receiving a PhD degree from the Faculty of Physics, University of Warsaw in 2000 he held postdoctoral fellowships at the University of Rochester (USA) and the University of Oxford (United Kingdom) followed by faculty appointments at the Nicolaus Copernicus University in Torun, Poland and the University of Warsaw. He is an author or a co-author of over 100 scientific articles dealing with various aspects of quantum technologies. Over the last decade he coordinated three projects funded by the 7th Framework Programme of the European Union and he realized two TEAM projects supported by the Foundation for Polish Science. In addition to his academic appointment at the University of Warsaw he also serves as the scientific coordinator of the QuantERA funding initiative, which groups 32 grant agencies from 26 countries and is coordinated by National Science Centre Poland.


Title Project Leader Project period Project funding
Quantum limits in coherent combination of optical signals Marcin Jarzyna 2024 - 2027 SONATA 19, NCN
Quantum Optical Technologies Konrad Banaszek 2018 - 2023 FNP
Amount of co-financing: 2 986 030,00 PLN
Asymptotyczne granice łączności klasycznej przy użyciu stanów kwantowych 2019 - 2023 Diamentowy Grant, MNiSW
Super-resolution imaging techniques based on spatial coherence Konrad Banaszek 2019 - 2022 Grant Award, Office of Naval Research Global
Quantum Optical Communication Systems Konrad Banaszek 2016 - 2019 TEAM I, FNP
Optimization of intensity-modulation/direct-detection optical key distribution under passive eavesdropping
Konrad Banaszek, Michał Jachura, Piotr Kolenderski, Mikołaj Lasota
Optics Express 29, 43091-43103 (2021)
Anyonic Two-Photon Statistics with a Semiconductor Chip
Saverio Francesconi, Arnault Raymond, Nicolas Fabre, Aristide Lemaître, Maria I. Amanti, Perola Milman, Florent Baboux, Sara Ducci
ACS Photonics, 8(9), 2764-2769.
Sub-Rayleigh characterization of a binary source by spatially demultiplexed coherent detection
Chandan Datta, Yink Loong Len, Karol Łukanowski, Konrad Banaszek, Marcin Jarzyna
Optics Express 29, 35592-35601 (2021)
Capacity of a Lossy Photon Channel With Direct Detection
Karol Łukanowski, Marcin Jarzyna
IEEE TRANSACTIONS ON COMMUNICATIONS vol. 69, issue 8, 5059 (2021)
Quantum Fingerprinting Over AWGN Channels With Power-Limited Optical Signals
Lipka, M., Jarzyna, M., & Banaszek, K.
IEEE Journal on Selected Areas in Communications, 38(3), 496-505
Low cost limit of classical communication with restricted quantum measurements
Kunz L., Jarzyna M., Zwoliński W., & Banaszek K.
New Journal of Physics
Quantum Limits in Optical Communications
Banaszek K., Kunz L., Jachura M. & Jarzyna M.
Journal of Lightwave Technology
Sub-Rayleigh resolution of two incoherent sources by array homodyning
Datta C., Jarzyna M., Len Y.L., Łukanowski K., Kołodyński J., & Banaszek K.
Physical Review A
Geometric approach to quantum statistical inference
Jarzyna M., Kołodyński J.
IEEE Journal on Selected Areas in Information Theory
Optimized communication strategies with binary coherent states over phase noise channels
DiMario, M. T., Kunz, L., Banaszek, K., & Becerra, F. E.
npj Quantum Information, 5(1), 1-7
Utilizing time-bandwidth space for efficient deep-space communication
Banaszek, K., Jachura, M., & Wasilewski, W.
International Conference on Space Optics—ICSO 2018 (Vol. 11180, p. 111805X). International Society for Optics and Photonics, 2019
Range dependence of pulse position modulation in the presence of background noise
Jarzyna, M., Zwolinski, W., & Banaszek, K.
International Conference on Space Optics—ICSO 2018 (Vol. 11180, p. 111805V). International Society for Optics and Photonics, 2019
Photon Efficiency Limits in the Presence of Background Noise
Banaszek, K., Zwoliński, W., Kunz, L., & Jarzyna, M.
arXiv preprint arXiv:1911.06772
Approaching the ultimate capacity limit in deep-space optical communication
Banaszek, K., Kunz, L., Jarzyna, M., & Jachura, M.
Free-Space Laser Communications XXXI (Vol. 10910, p. 109100A). International Society for Optics and Photonics.
Beating the Standard Quantum Limit for Binary Constellations in the Presence of Phase Noise
Kunz, L., DiMario, M. T., Becerra, F. E., & Banaszek, K.
2019 21st International Conference on Transparent Optical Networks (ICTON) (pp. 1-6). IEEE.
Ultimate capacity limit of a multi-span link with phase-insensitive amplification
Banaszek K., Kunz L., Jachura M., & Jarzyna M.
2019 European Conference on Optical Communication (ECOC)
Noisy propagation of coherent states in a lossy Kerr medium
Kunz, L., Paris, M. G., & Banaszek, K. (2018).
JOSA B, 35(2), 214-222.
The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry
Kurek, A. R., Stachowski, A., Banaszek, K., & Pollo, A. (2018).
Monthly Notices of the Royal Astronomical Society, 476(2), 1696-1704
Optimizing deep-space optical communication under power constraints
Jarzyna, M., Zwoliński, W., Jachura, M., & Banaszek, K. (2018).
In Free-Space Laser Communication and Atmospheric Propagation XXX (Vol. 10524, p. 105240A)
Visibility-based hypothesis testing using higher-order optical interference
Jachura, M., Jarzyna, M., Lipka, M., Wasilewski, W., & Banaszek, K. (2018).
Physical review letters, 120(11), 110502.
Beating the Rayleigh Limit Using Two-Photon Interference
Parniak, M. Borowka, S. Boroszko, K. Wasilewski, W. Banaszek, K. Demkowicz-Dobrzanski, R. (2018).
Physical Review Letters, 121 (25)
Range dependence of an optical pulse position modulation link in the presence of background noise
Zwolinski, W. Jarzyna, M. Banaszek, K. (2018).
Optics Express, 26 (20), 25827
Feasibility of quantum fingerprinting using optical signals with random global phase
Banaszek, K. Lipka, M. Jarzyna, M. Gruneisen, M. T. Dusek, M. Rarity, J. G. (2018).
Proceedings Volume 10803, Quantum Information Science and Technology IV
NMR shielding constants in group 15 trifluorides
Field-Theodore, T. E., Olejniczak, M., Jaszuński, M., & Wilson, D. J.
Physical Chemistry Chemical Physics, 20(35), 23025-23033.
Classical capacity per unit cost for quantum channels
Jarzyna, M. (2017).
Physical Review A, 96(3), 032340.
On super-resolution imaging as a multiparameter estimation problem
Chrostowski, A., Demkowicz-Dobrzański, R., Jarzyna, M., & Banaszek, K. (2017).
International Journal of Quantum Information, 15(08), 1740005.
Quantum fingerprinting using two-photon interference
Jachura, M., Lipka, M., Jarzyna, M., & Banaszek, K.
Optics express, 25(22), 27475-27487.
Structured Optical Receivers for Efficient Deep-Space Communication
Banaszek, K., & Jachura, M. (2017).
arXiv preprint arXiv:1711.02521.
Efficiency of Optimized Pulse Position Modulation with Noisy Direct Detection
Jarzyna, M., & Banaszek, K. (2017).
arXiv preprint arXiv:1709.00030.
Title Deadline for applications
PhD Student (CeNT-39-2022) 19/08/2022
Student in The Centre for Quantum Optical Technologies 17/07/2021
Group leader (visiting researcher) in the Quantum Technologies Laboratory 15/02/2021
Group leader (adjunct) in the Quantum Technologies Laboratory 15/02/2021
Specialist in the Centre for Quantum Optical Technologies 12/03/2020
Post-doc in Quantum Optical Technologies 08/11/2019
Students to work in the Centre for Quantum Optical Technologies 20/10/2019
Students to work in the Quantum Technologies Laboratory 13/09/2019
Students to work in the Quantum Technologies Laboratory 13/09/2019
Research Grants Officer 22/07/2019
Research Group Leader (adiunkt naukowy) in Centre for Quantum Optical Technologies International Research Agenda Unit 07/06/2019
Research Group Leader (profesor uczelni) in Centre for Quantum Optical Technologies International Research Agenda Unit 07/06/2019
Technology Officer – QOT 22/11/2018
Postdoc in Quantum information theory, quantum optics 20/10/2018
Ph. D. student position in Quantum Technologies Laboratory 11/09/2018
Technik 31/08/2018
PhD student in the project “Quantum Optical Technologies — Light-matter interfaces theme” 16/08/2018
Student in the project – “Quantum Optical Technologies — Light-matter interfaces theme” 16/08/2018
Group leaders in the scientific project Quantum Optical Technologies 11/06/2018
Group Leaders to work in the scientific project Quantum Optical Technologies 11/06/2018
PhD student – Quantum Optical Technologies 01/06/2018
Postdoctoral researcher – Quantum Optical Technologies 01/06/2018
Student to work in the Quantum Technologies Laboratory 01/06/2018
PhD student to the Quantum Technologies Laboratory 01/06/2018