Laboratory of NMR Spectroscopy

We develop new tools for multidimensional spectroscopy by puting into practice the recent achievements of applied mathemathics. Among them, the area of compressed sensing (CS) particularly attracts our attention.

The key idea of CS is a new signal sampling theorem stating, that in many cases the perfect reconstruction of a signal can be achieved with much smaller number of samples than assumed by a conventional sampling theory. The group of methods is developing very rapidly and found applications in many fields of science, e.g. MRI, astronomy, biology and many others. It was also introduced to NMR spectroscopy. In case of NMR, the use of CS allows the significant shortening of experiments and the implementation of novel techniques that are infeasible with conventional sampling.

Currently, our group works on the theory and practice of CS-NMR by developing new signal processing algorithms and signal acquisition methods. We elaborate techniques dedicated for particular cases of NMR experiments – analysis of chemical reactions and processes, NMR diffusometry and relaxometry and metabolomics.

The laboratory provides an access to equipment for NMR of proteins, solid state materials and suspensions. We are open to the scientific collaboration with academic and industrial groups.

Prof. Krzysztof Kazimierczuk
email: k.kazimierczuk@cent.uw.edu.pl
phone: +48 22 55 43666
room: 00.186

Degrees: MSc (Chemistry and Biophysics), PhD (chemistry), DSc (Habilitation, Chemistry)

Titles: Assistant Professor at University of Warsaw, PhD, Dsc

Affiliation: Centre of New Technologies, University of Warsaw, Poland

Education

2005 – MSc. Degree in Chemistry at the University of Warsaw. Supervisor: prof. Wiktor Koźmiński.

2007 – MSc. Degree in Biophysics at the University of Warsaw. Supervisors: prof. Ryszard Stolarski and prof. Wiktor Koźmiński.

10.06.2009 – PhD in chemistry (Faculty of Chemistry, University of Warsaw)

08.02.2017 – Habilitation degree in chemistry (Faculty of Chemistry, University of Warsaw)

Employment

From 1.11.2009 – Employed at the University of Warsaw.

2010 – 2011 – Postdoc at Swedish NMR Center, University of Gothenburg, Sweden. Title of the project: “NMR toolbox for studying intrinsically disordered proteins“.

1.05.2011-15.04.2012 – Postdoc in TEAM programme project ”Towards new applications of NMR spectroscopy in chemical and biomolecular structural studies“ at the University of Warsaw

2012 – current – Head of Laboratory of NMR, Centre of New Technologies, University of Warsaw

Honors and Awards

2007 – Antoni Grabowski Award for PhD student in Chemistry

2008 – Stipend of the Foundation for Polish Science (START programme). Prolongation for 2009.

2009 – PhD Thesis ”Methods of fast acquisition of NMR spectra for structural studies” honoured by Faculty Council of the Faculty of Chemistry, University of Warsaw.

2010 – PhD Thesis “Methods of fast acquisition of NMR spectra for structural studies” awarded by Prime Minister of Poland Award for PhD Thesis.

2014 – Wojciech Świętosławski award of the 2nd grade by the Polish Chemical Society

2015 – Wiley Award for the best lecture in NMR spectroscopy: “Dynamic non-uniform sampling”

Current scientific interests

Methods of multidimensional NMR. Processing of non-stationary signals. Compressed sensing in spectroscopy and chemistry.

Paper reviewing

Reviewer in: ChemPhysChem, Journal of Magnetic Resonance, Journal of Biomolecular NMR, Magnetic Resonance in Chemistry, Concepts in Magnetic Resonance, RSC Advances, Springer-PLUS and grants of National Science Centre, Swiss National Science Foundation and French National Research Agency.

Overview of teaching activity

Introductory seminars in molecular spectroscopy

Laboratory courses in molecular spectroscopy, physics and physical chemistry

Popular science: lecture and laboratory practice for high-school students etc.

International courses in biomolecular NMR spectroscopy organized in Swedish NMR Centre, Masaryk University (Brno), Spronk Consultancy (Vilinius), Polish Academy of Sciences (Łodź) and at the University of Warsaw

Research projects

  1. KOLUMB stipend (Foundation for Polish Science): “NMR toolbox for studying intrinsically disordered proteins“ (2011)
  2. IUVENTUS PLUS grant (Ministry of Science and Higher Education), project: ”Reconstruction of NMR spectra from incomplete data with compressed sensing algorithms“ (2012-2014)
  3. SONATA-BIS 2 grant (National Centre of Science): ”Sparse and approximately-sparse representations in problems of NMR spectroscopy“ (2013-2018)
  4. HARMONIA 2 grant (National Centre of Science): ”Regularization algorithms for the processing of NMR spectra of metabolite mixtures“ (2013-2014)
  5. ”Inkubator Innowacyjności“ (Ministry of Science and Higher Education): ”Statusino – mobile application for monitoring status of NMR spectrometers“
  6. OPUS 9 grant (National Centre of Science): ”Time-resolved N-dimensional spectroscopy for monitoring of physical and chemical processes “ (2016-2018)
  7. HARMONIA 9 grant (National Centre of Science): ”Radon transform in NMR spectroscopy of proteins“ (2018-2021)
  8. FIRST TEAM grant (Foundation for Polish Science): ”Methods of non-stationary signal analysis for more sensitive NMR spectroscopy“ (2018-2021)

Selected  Publications

  1. Kazimierczuk, Krzysztof, Wiktor Koźmiński, and Igor Zhukov. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. Journal of Magnetic Resonance, 179(2):323–328, 2006.
  2. Kazimierczuk, Krzysztof, Anna Zawadzka, Wiktor Koźmiński, and Igor Zhukov. Random sampling of evolution time space and Fourier transform processing. Journal of Biomolecular NMR, 36(3):157–168, 2006.
  3. Kazimierczuk, Krzysztof, Anna Zawadzka, Wiktor Koźmiński, and Igor Zhukov. Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. Journal of Magnetic Resonance, 188(2):344–356, 2007.
  1. Kazimierczuk, Krzysztof, Anna Zawadzka, Wiktor Koźmiński, and Igor Zhukov. Determination of spin-spin couplings from ultrahigh resolution 3D NMR spectra obtained by optimized random sampling and multidimensional fourier transformation. Journal of the American Chemical Society,130(16):5404–5405, 2008.
  1. Kazimierczuk, Krzysztof, Anna Zawadzka, and Wiktor Koźmiński. Optimization of random time domain sampling in multidimensional NMR. Journal of Magnetic Resonance, 192(1):123–130, 2008.
  1. Kazimierczuk, Krzysztof, Anna Zawadzka, and Wiktor Koźmiński. Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. Journal of Magnetic Resonance, 197(2):219–228, 2009.
  2. Anna Zawadzka-Kazimierczuk, Kazimierczuk, Krzysztof, and Wiktor Koźmiński. A set of 4D NMRexperiments of enhanced resolution for easy resonance assignment in proteins. Journal of Magnetic Resonance, 202(1):109–116, 2010.
  3. Kazimierczuk, Krzysztof, Anna Zawadzka-Kazimierczuk, and Wiktor Koźmiński. Non-uniform frequency domain for optimal exploitation of non-uniform sampling. Journal of Magnetic Resonance, 205(2):286–292, 2010.
  4. Kazimierczuk, Krzysztof, Jan Stanek, Anna Zawadzka-Kazimierczuk, and Wiktor Koźmiński. Random sampling in multidimensional NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 57(4):420–434, 2010.
  5. Motáčková, Veronika and Nováček, Jiri and Zawadzka-Kazimierczuk, Anna and Kazimierczuk, Krzysztof and Žídek, Lukas and Šanderová, Hanna and Krásný, Libor and Koźmiński, Wiktor and Sklenář, Vladimir. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. Journal of Biomolecular NMR, 48(3):169–177, 2010.
  1. Kazimierczuk, Krzysztof and Vladislav Yu. Orekhov. Accelerated NMR spectroscopy by using compressed sensing. Angewandte Chemie – International Edition, 50(24):5556–5559, 2011.
  2. Kazimierczuk, Krzysztof and Vladislav Yu. Orekhov. A comparison of convex and non-convex compressed sensing applied to multidimensional NMR. J. Magn. Reson., 223:1–10, 2012.
  3. Mateusz Urbańczyk, Diana Bernin, Wiktor Koźmiński, and K. Kazimierczuk. Iterative thresholding algorithm for multiexponential decay applied to pgse nmr data. Analytical Chemistry, 85(3):1828–1833, 2013.
  4. Kazimierczuk, Krzysztof, Olivier Lafon, and Philippe Lesot. Criteria for sensitivity enhancement by compressed sensing: Practical application to anisotropic nad 2d-nmr spectroscopy. Analyst, 139(11):2702–2713, 2014.
  5. Mateusz Urbańczyk, Wiktor Koźmiński, and Kazimierczuk, Krzysztof. Accelerating diffusion-ordered nmr spectroscopy by joint sparse sampling of diffusion and time dimensions. AngewandteChemie – International Edition, 53(25):6464–6467, 2014.
  1. Wolfgang Bermel, Dass, Rupashree, Klaus-Peter Neidig, and Kazimierczuk, Krzysztof. Two-dimensional nmr spectroscopy with temperature-sweep. ChemPhysChem, 15(11):2217–2220, 2014.
  1. Maxim Mayzel, Kazimierczuk, Krzysztof, and Vladislav Yu. Orekhov. The causality principle in the reconstruction of sparse NMR spectra. Chemical Communications, 50(64):8947–8950, 2014.
  2. Dass, Rupashree, Wiktor Koźmiński, and Kazimierczuk, Krzysztof. Analysis of Complex Reacting Mixtures by Time-Resolved 2D NMR. Analytical Chemistry, 87(2):1337–1343, 2015.
  3. Kazimierczuk, Krzysztof and Vladislav Orekhov. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magnetic resonance in chemistry : MRC, 53(11):921–6, dec 2015.
  4. Ikenna Edward Ndukwe, Shchukina, Alexandra, Kazimierczuk, Krzysztof, and Craig Philip Butts. Rapid and safe ASAP acquisition with EXACT NMR. Chem. Commun., 2(2):303, 2016.
  5. Shchukina, Alexandra, Paweł Kasprzak, Dass, Rupashree, Michał Nowakowski, and Kazimierczuk, Krzysztof. Pitfalls in compressed sensing reconstruction and how to avoid them. Journal of Biomolecular NMR, pages 1–20, 2016.
  6. Dass, Rupashree, Paweł Kasprzak, and Kazimierczuk, Krzysztof. Quick, sensitive serial NMR experiments with Radon transform. Journal of Magnetic Resonance, 282:114–118, 2017. Pkt. MNiSW (2016):30

Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid
Krzysztof Durka, Krzysztof Kazimierczuk, Sergiusz Luliński
Microporous and Mesoporous Materials Volume 337, May 2022, 111914
Enhanced Nuclear Magnetic Resonance Spectroscopy with Isotropic Mixing as a Pseudodimension
Dariusz Gołowicz, Alexandra Shchukina, Krzysztof Kazimierczuk
Anal. Chem. 2022, 94, 25, 9114–9121
Temperature as an extra dimension in multidimensional protein NMR.
Shchukina, A., Małecki, P., Mateos, B., Nowakowski, M., Urbańczyk, M., Kontaxis, G., ... & Kazimierczuk, K.
Chemistry–A European Journal, 27(5), 1753-1767
Variable-temperature NMR spectroscopy for metabolite identification in biological materials
Ewa K. Nawrocka, Mateusz Urbańczyk, Kamil Kozińskia , Krzysztof Kazimierczuk
RSC Advances, 2021,11, 35321-35325
NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR
Yulia Pustovalova, Frank Delaglio, D. Levi Craft, Haribabu Arthanari, Ad Bax, Martin Billeter, Mark J. Bostock, Hesam Dashti, D. Flemming Hansen, Sven G. Hyberts, Bruce A. Johnson, Krzysztof Kazimierczuk, Hengfa Lu, Mark Maciejewski, Tomas M. Miljenović, Mehdi Mobli, Daniel Nietlispach, Vladislav Orekhov, Robert Powers, Xiaobo Qu, Scott Anthony Robson, David Rovnyak, Gerhard Wagner, Jinfa Ying, Matthew Zambrello, Jeffrey C. Hoch, David L. Donoho, Adam D. Schuyler
Magn. Reson., 2, 843–861, 2021
Clustered sparsity and Poisson-gap sampling
Paweł Kasprzak, Mateusz Urbańczyk, Krzysztof Kazimierczuk
Journal of Biomolecular NMR 2021, 75,401–416
Benefits of time-resolved nonuniform sampling in reaction monitoring: The case of aza-Michael addition of benzylamine and acrylamide
Dariusz Gołowicz, Magdalena Kaźmierczak, Krzysztof Kazimierczuk
Magnetic Resonance in Chemistry 2021, 59(3), pp. 213–220
Applications of alternative sampling methods
Krzysztof Kazimierczuk
Magnetic Resonance in Chemistry Volume 59, Issue 3, Pages 199 - 200
Ultrafast methods for relaxation and diffusion
Ville-Veikko Telkki, Mateusz Urbańczyk, Vladimir Zhivonitko
Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 126–127, October–December 2021, Pages 101-120
Fast time-resolved NMR with non-uniform sampling
Gołowicz, D., Kasprzak, P., Orekhov, V., & Kazimierczuk, K.
Progress in Nuclear Magnetic Resonance Spectroscopy.
Toward the synthesis, fluorination and application of N–graphyne
Abdi, G., Filip, A., Krajewski, M., Kazimierczuk, K., Strawski, M., Szarek, P., ... & Szczurek, A.
RSC Advances, 10(66), 40019-40029
Toward the synthesis, fluorination and application of N-graphyne
Abdi, G., Filip, A., Krajewski, M., Kazimierczuk, K., Strawski, M., Szarek, P., ... & Szczurek, A.
RSC Advances, 10(66), 40019-40029
Enhancing benchtop NMR spectroscopy by means of sample shifting
Romero, J. A., Kazimierczuk, K., & Gołowicz, D.
Analyst, 145(22), 7406-7411
Benefits of time-resolved nonuniform sampling in reaction monitoring: The case of aza-Michael addition of benzylamine and acrylamide
Gołowicz, D., Kaźmierczak, M., & Kazimierczuk, K.
Magnetic Resonance in Chemistry, 59(3), 213-220
Non-Stationary Complementary Non-Uniform Sampling (NOSCO NUS) for Fast Acquisition of Serial 2D NMR Titration Data
Romero, J. A., Nawrocka, E. K., Shchukina, A., Blanco, F. J., Diercks, T., & Kazimierczuk, K.
Angewandte Chemie, 132(52), 23702-23705
Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites
Perlinska, A. P., Stasiulewicz, A., Nawrocka, E. K., Kazimierczuk, K., Setny, P., & Sulkowska, J. I.
PLoS computational biology, 16(5), e1007904
A novel high-dimensional NMR experiment for resolving protein backbone dihedral angle ambiguities
Kauffmann, C., Kazimierczuk, K., Schwarz, T. C., Konrat, R., & Zawadzka-Kazimierczuk, A.
Journal of biomolecular NMR, 74(4), 257-265
On Jackknifed Greedy Algorithms and Their Applications in NMR
Kasprzak, P., Kazimierczuk, K., & Shchukina, A. L.
Bulletin of the Russian Academy of Sciences: Physics, 84(11), 1335-1340
Blue-Shift Hydrogen Bonds in Silyltriptycene Derivatives: Antibonding σ* Orbitals of the Si−C Bond as Effective Acceptors of Electron Density
Mames, A., Gołowicz, D., Pietrzak, M., Kazimierczuk, K., Szymański, S., & Ratajczyk, T.
ChemPhysChem, 21(6), 540-545
Enhancing compression level for more efficient compressed sensing and other lessons from NMR spectroscopy
Gołowicz, D., Kasprzak, P., & Kazimierczuk, K.
Sensors, 20(5), 1325
Resolution enhancement in NMR spectra by deconvolution with compressed sensing reconstruction
Kazimierczuk, K., Kasprzak, P., Georgoulia, P. S., Matečko-Burmann, I., Burmann, B. M., Isaksson, L., ... & Orekhov, V. Y.
Chemical Communications, 56(93), 14585-14588
TReNDS-Software for reaction monitoring with time-resolved non-uniform sampling
Urbańczyk, M., Shchukina, A., Gołowicz, D., & Kazimierczuk, K. (2019).
Magnetic Resonance in Chemistry, 57(1), 4-12.
Monitoring hydrogenation reactions using benchtop 2D NMR with extraordinary sensitivity and spectral resolution
Gołowicz, D., Kazimierczuk, K., Urbańczyk, M., & Ratajczyk, T. (2019).
ChemistryOpen, 8(2), 196-200
Accelerated acquisition in pure-shift spectra based on prior knowledge from 1H NMR
Shchukina, A., Kaźmierczak, M., Kasprzak, P., Davy, M., Akien, G. R., Butts, C. P., & Kazimierczuk, K.
Chemical Communications
Quick temperature-swept pure-shift NMR: case of solvent effects in atorvastatin
Rytel M., Kasprzak P., Setny P. & Kazimierczuk K.
Physical Chemistry Chemical Physics, 35
Nonstationary Two-Dimensional Nuclear Magnetic Resonance: A Method for Studying Reaction Mechanisms in Situ
Nawrocka, E. K., Kasprzak, P., Zawada, K., Sadło, J., Grochala, W., Kazimierczuk, K., & Leszczyński, P. J.
Analytical Chemistry, 91(17), 11306-11315.
SCoT: Swept coherence transfer for quantitative heteronuclear 2D NMR
Gołowicz, D., Urbańczyk, M., Shchukina, A., & Kazimierczuk, K. (2018).
Journal of Magnetic Resonance, 294, 1-6.
Compressed Sampling in NMR spectroscopy
Kazimierczuk, K. (2018).
eMagRes, 1-8
Alternative data processing techniques for serial NMR experiments
Shchukina, A., Urbańczyk, M., Kasprzak, P., & Kazimierczuk, K.
Concepts in Magnetic Resonance Part A, 46A(2)
Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies.
Urbańczyk, M., Nowakowski, M., Koźmiński, W., & Kazimierczuk, K. (2017).
Journal of biomolecular NMR, 68(2), 155-161.
Erratum to: Pitfalls in compressed sensing reconstruction and how to avoid them
Shchukina, A., Kasprzak, P., Dass, R., Nowakowski, M., & Kazimierczuk, K. (2017).
Journal of biomolecular NMR, 68(2), 99-100.
Enabling Fast Pseudo-2D NMR Spectral Acquisition for Broadband Homonuclear Decoupling: The EXACT NMR Approach
Ndukwe, I., Shchukina, A., Zorin, V., Cobas, C., Kazimierczuk, K., & Butts, C. (2017).
ChemPhysChem, 18(15), 2081-2087.
Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures
Dass, R., Grudzia̧ż, K., Ishikawa, T., Nowakowski, M., Dȩbowska, R., & Kazimierczuk, K. (2017).
Frontiers in microbiology, 8, 1306.
Quick, sensitive serial NMR experiments with Radon transform
Dass, R., Kasprzak, P., & Kazimierczuk, K. (2017).
Journal of Magnetic Resonance, 282, 114-118.
Pitfalls in compressed sensing reconstructions and how to avoid them
Shchukina, A., Kasprzak, P., Dass, R., Nowakowski, M., & Kazimierczuk, K. (2017).
Journal of biomolecular NMR, 68(2), 79-98.
Backbone Assignment of the MALT1 Paracaspase by Solution NMR.
Unnerståle, S., Nowakowski, M., Baraznenok, V., Stenberg, G., Lindberg, J., Mayzel, M., ... & Agback, T. (2016).
PloS one, 11(1), e0146496.
EXtended ACquisition Time (EXACT) NMR—A Case for′ Burst′ Non‐Uniform Sampling.
Ndukwe, I. E., Shchukina, A., Kazimierczuk, K., Cobas, C., & Butts, C. P. (2016).
ChemPhysChem, 17(18), 2799-2803.
Synthesis, Biological Activity, and NMR‐Based Structural Studies of Deltorphin I Analogs Modified in Message Domain with a New α, α‐Disubstituted Glycines.
Lasota, A., Frączak, O., Muchowska, A., Nowakowski, M., Maciejczyk, M., Ejchart, A., & Olma, A. (2016).
Chemical biology & drug design, 87(6), 824-832.
Monitoring polydispersity by NMR diffusometry with tailored norm regularisation and moving-frame processing.
Urbańczyk, M., Bernin, D., Czuroń, A., & Kazimierczuk, K. (2016).
Analyst, 141(5), 1745-1752.
Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins
Piai, A., Gonnelli, L., Felli, I. C., Pierattelli, R., Kazimierczuk, K., Grudziąż, K., ... & Zawadzka-Kazimierczuk, A. (2016)
Journal of biomolecular NMR, 64(3), 239-253
Artifacts in time-resolved NUS: A case study of NOE buil-up curves from 2D NOESY
Dass, R., Kasprzak, P., Koźmiński, W., & Kazimierczuk, K. (2016).
Journal of Magnetic Resonance, 265, 108-116.
Rapid and safe ASAP acquisition with EXACT NMR
Ndukwe, I. E., Shchukina, A., Kazimierczuk, K., & Butts, C. P. (2016)
Chemical Communications, 52(86), 12769-12772.
The Quest for Simplicity: Remarks on the Free-Aproach Models
Jaremko, Ł., Jaremko, M., Nowakowski, M., & Ejchart, A. (2015)
The Journal of Physical Chemistry B, 119(36), 11978-11987
Looking at blinking quantum emitter through time slots: the effect of blind times
Shchukina, A. L., Eremchev, I. Y., & Naumov, A. V. (2015)
Physical Review E, 92(3), 032102
Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.
Lesot, P., Kazimierczuk, K., Trébosc, J., Amoureux, J. P., & Lafon, O. (2015).
Magnetic Resonance in Chemistry, 53(11), 927-939.
Non‐uniform sampling: post‐Fourier era of NMR data collection and processing.
Kazimierczuk, K., & Orekhov, V. (2015).
Magnetic Resonance in Chemistry, 53(11), 921-926.
Analogues of deltorphin I containing conformationally restricted amino acids in position 2: structure and opioid activity.
Lasota, A., Frączak, O., Leśniak, A., Muchowska, A., Lipkowski, A. W., Nowakowski, M., ... & Olma, A. (2015).
Journal of Peptide Science, 21(2), 120-125.
Non-uniform sampling: post-Fourier era of NMR data collection and processing
Kazimierczuk, K., & Orekhov, V. (2015).
Magnetic Resonance in Chemistry, 53(11), 921-926.
Analysis of complex reacting mixtures by time-resolved 2D NMR.
Dass, R., Kozminski, W., & Kazimierczuk, K. (2014).
Analytical chemistry, 87(2), 1337-1343.
Modified OMP algorithm for exponentially decaying signals.
Kazimierczuk, K., & Kasprzak, P. (2014).
Sensors, 15(1), 234-247.
The causality principle in the reconstruction of sparse NMR spectra.
Mayzel, M., Kazimierczuk, K., & Orekhov, V. Y. (2014).
Chemical Communications, 50(64), 8947-8950.
Two‐Dimensional NMR Spectroscopy with Temperature‐Sweep.
Bermel, W., Dass, R., Neidig, K. P., & Kazimierczuk, K. (2014).
ChemPhysChem, 15(11), 2217-2220.
Accelerating Diffusion‐Ordered NMR Spectroscopy by Joint Sparse Sampling of Diffusion and Time Dimensions.
Urbańczyk, M., Koźmiński, W., & Kazimierczuk, K. (2014).
Angewandte Chemie, 126(25), 6582-6585.
A method for joint sparse sampling of time and gradient domains in diffusion-ordered NMR spectroscopy.
Kazimierczuk, K., Lafon, O., & Lesot, P. (2014).
Analyst, 139(11), 2702-2713.
Accelerating diffusion-ordered NMR spectroscopy by joint sparse sampling of diffusion and time dimensions
Urbańczyk, M., Koźmiński, W., & Kazimierczuk, K. (2014).
Angewandte Chemie, 126(25), 6582-6585.
Two-dimensional NMR spectroscopy with temperature-sweep
Bermel, W., Dass, R., Neidig, K. P., & Kazimierczuk, K. (2014).
ChemPhysChem, 15(11), 2217-2220.
Study of near-symmetric cyclodextrins by compressed sensing 2D NMR
Misiak, M., Koźmiński, W., Chmurski, K., & Kazimierczuk, K. (2013)
Magnetic Resonance in Chemistry, 51(2), 110-115.
Iterative Thresholding Algorithm for Multiexponential Decay Applied to PGSE NMR Data
Urbańczyk, M., Bernin, D., Koźmiński, W., & Kazimierczuk, K. (2013)
Analytical chemistry, 85(3), 1828-1833.
High-Dimensional NMR Spectra for Structural Studies of Biomolecules
Kazimierczuk, K., Stanek, J., Zawadzka‐Kazimierczuk, A., & Koźmiński, W. (2013)
ChemPhysChem, 14(13), 3015-3025