Laboratorium Fotoelektrochemii i Konwersji Energii Słonecznej

Zespół bada procesy fizyko-chemiczne związane z interakcją materiałów półprzewodnikowych i nanostruktur metalicznych ze światłem. Prace dotyczą w pierwszym rzędzie własności fotoelektrochemicznych cienkowarstwowych półprzewodnikowych elektrod tlenkowych.

Tego rodzaju elektrody, złożone np. z tlenku wolframu (WO3) lub z tlenku żelaza (Fe2O3), stosowane są do fotoelektrolizy wody jak również do rozkładu roztworów zanieczyszczonych związkami organicznymi. W obu przypadkach fotoelektroliza prowadzi do produkcji wodoru na katodzie. W wyniku absorpcji światła przez elektrody półprzewodnikowe proces fotoelektrolizy zachodzi przy napięciu niższym od teoretycznego napięcia rozkładu wody (1.23 V). Różnica pomiędzy efektywnym napięciem procesu fotoelektrolizy i napięciem elektrolizy (na nieoświetlonej elektrodzie) wyznacza wydajność konwersji energii świetlnej w energię chemiczną powstałego wodoru. Wydajność konwersji energii zależy od własności i sposobu przygotowania materiału półprzewodnikowego; w przypadku elektrod oświetlonych światłem słonecznym, wartość przerwy energetycznej (Eg) półprzewodnika powinna pozwolić na absorpcję znaczącej części widma widzialnego.

Załączona poniżej krótka prezentacja przedstawia podsumowanie ostatnich (w latach 2018-2020) badań przeprowadzonych w naszym laboratorium w ramach projektu Maestro.

Laboratorium Fotoelektrochemii i Konwersji Energii Słonecznej

Wyposażenie laboratorium  
Synteza cienkowarstwowych półprzewodnikowych elektrod tlenkowych oparta jest na metodach zol-zel i „spray pyrolysis”.  Laboratorium dysponuje również zestawem aparatury do pomiarów foto-elektrochemicznych, obejmującym lampy ksenonowe i monochromator pozwalający na wyznaczanie wydajności kwantowej fotoreakcji, symulator światła słonecznego oraz diody laserowe.
kkkkkkkkkkkkkkkkkkk

Equipment:

  • Potentiostats: Autolab AUT86128; Biologic SP300; CHI Mod. 660E;
  • 450 W xenon lamp set in an Oriel 66021 housing and Oriel Multispec 257 monochromator;
  • Laser Diode Module, 405 nm;
  • Solar 150 W Simulators Oriel – Mod. 68806;
  • Electrochemical Workstation Zahner;
  • Scanning Probe Microscope SECM-063;
  • Spectrophotometr Jasco V-650;
  • Glovebox Workstation, Labstar, Mbraun, 10344.
prof. dr hab. Jan Augustyński
e-mail: j.augustynski@cent.uw.edu.pl
telefon: +48 22 55 43710
pokój: 02.168

After having obtained the PhD degree from the Polytechnic Institute of Grenoble in France in 1970, Jan Augustynski acted over several years as lecturer-group leader and professor of chemistry at the University of Geneva in Switzerland. His research interests comprise passivity of metals, electrocatalysis and photo-electrochemistry with special focus on nanostructured materials. Back in Poland, he received Polish professor title in 2009. Since 2011 J.A. has been with the Center for New Technologies Warsaw University where he is head of the Laboratory of photo-electrochemistry and solar energy conversion.

Jan Augustynski lead Warsaw University contributions to two European research projects (within the framework of FP7) on photo-electrochemical energy conversion and solar hydrogen production:  Nanopec (2007-2009) and Solarogenix (2013-2016).

 

J.A. is the author of 170 publications that received 5711 citations.

Selected recent papers:

– Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High Temperature Annealing. A. Jelinska, K. Bienkowski, M. Jadwiszczak, M. Pisarek, M. Strawski, D. Kurzydlowski, R. Solarska, J. Augustynski, ACS Catal. In press.

– Highly Efficient and Stable Solar Water Splitting at (Na)WO3 Photoanodes in Acidic Electrolyte Assisted by Non-Noble Metal Oxygen Evolution. M. Sarnowska, K. Bienkowski, P. J. Barczuk, R. Solarska, J. Augustynski, Adv. En. Mat. 6 (2016) 1600526 cit. 17.

– Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer. L. G. Bloor, R. Solarska, K. Bienkowski, M.D. Symes, L. Cronin,  JACS 138 (2016) 6707 cit. 19.

– Plasmon resonance-enhanced photoelectrodes and photocatalysts.Coord. J. Augustynski, K. Bienkowski, R. Solarska, Coord. Chem. Rev.325 (2016) 116 cit. 8.

– Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles. R. Solarska, K. Bienkowski, S. Zoladek, A. Majcher, T. Stefaniuk, P. J. Kulesza, J. Augustynski, Angew. Chem. Int. Ed. 53, (2014) 14196 cit. 28.

– Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting. S. Hilaire, M. J. Süess, N. Kränzlin, K. Bieńkowski, R. Solarska, J. Augustyński, M. Niederberger, J. Mater. Chem. A 2, (2014) 20530 cit. 25.

– Highly efficient water splitting by a dual-absorber tandem cell. J. Brillet, J-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustyński, M. Graetzel, K. Sivula, Nature Photonics 6, (2012) 824 cit. 246.

– Highly stable efficient visible-light driven water photoelectrolysis system using nanocrystalline WO3 photoanode and methane sulfonic acid electrolyte. R. Solarska, R. Jurczakowski, J. Augustyński Nanoscale 4, (2012) 1553 cit. 67.

– Silver nanoparticles-induced photocurrent enhancement at WO3 photoanodes. R.Solarska, A. Królikowska, J. Augustyński, Angew. Chem. Int. Ed. 49, (2010) 7980 cit. 82.

Earlier (since 2001) most cited papers:

– Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustyński, J. Am. Chem. Soc. 123, 10639 (2001) 888 cit. 769.

– Photoelectrochemical properties of nanostructured tungsten trioxide films. C. Santato, M. Ulmann, J. Augustyński, J. Phys. Chem. B 105, 936 (2001) 936 cit. 389.

– A highlight: Metal oxide photoanodes for solar hydrogen production. B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, J. Augustyński, J. Mater. Chem. 18, 2298 (2008) 2298 cit. 346.

– Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. C. Jorand Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustyński, R. Cerny, J. Phys. Chem. B, 109, 13685 (2005) 13685 cit. 227.

– Enhanced visible light conversion efficiency using nanocrystalline WO3 films. C. Santato, M. Ulmann, J. Augustynski, Adv. Mater. 13, 511  (2001) 511 cit.149

 

Patents:

– M. Graetzel and J. Augustynski, “Tandem Cell for Water Cleavage by Visible Light”. US Patent 6,936,143 (2005).

– J. Augustynski, M. Ulmann and R. Solarska, “Electrodes with Tungsten Oxide Films” Patent GB2413337 (A) AU2005235787 (A1) WO2005103329 (A3) (2005).

 

Distinctions:

– 69th Annual Meeting of the International Society of Electrochemistry: 2-7 Sept. 2018 in Bologna –  Symposium 9 on Photo-electrochemical energy conversion – in honor of Prof. Jan Augustynski.

-One among 10 principal implemented discoveries at the University of Geneva over the period 1998-2008:  „Development of a synthesis method of metal oxide/metal catalysts used for the fabrication of gas sensors for the detection of nitrogen oxides, ozone, respectively, carbon oxide (CO) and hydrocarbons”.  Since 2004, large scale industrial production by the Swiss company Microchemical Systems (MICS) Courcelles, now belonging to the British company e2v. These sensors equip a large number of automobiles fabricated over the world.

 

 

 


Photoelectrochemical behavior of WO3 in an aqueous methanesulfonic acid electrolyte.
Jakubow-Piotrowska, K., Kurzydlowski, D., Wrobel, P., Augustynski, J. (2022)
ACS Physical Chemistry Au, 2, 299-304. [2022]
Photoelectrocatalytic hydrogen generation coupled with reforming of glucose into valuable chemicals using a nanostructured WO3 photoanode.
Jakubow-Piotrowska, K., Witkowski, B., Augustynski, J. (2022)
Communications Chemistry, 5, 125. [2022]
Highly efficient sunlight-driven seawater splitting in a photo-electrochemical cell with chlorine evolved at nanostructured WO3 photo-anode and hydrogen stored as hydride within metallic cathode
Jadwiszczak, M., Jakubow‐Piotrowska, K., Kedzierzawski, P., Bienkowski, K., & Augustynski, J.
Advanced Energy Materials, 10(3), 1903213 [2020]
Best practices in photoelectrochemistry
Gouda, A., Liu, T., Byers, J. C., Augustynski, J., & Santato, C. (2021).
Journal of Power Sources, 482, 228958. [2021]
Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting
Barczuk, P.J., Noworyta, K.R., Dolata, M., Jakubow-Piotrowska, K. & Augustynski, J. (2020).
Solar Energy Materials and Solar Cells, 208, 110424. [2020]
Ni-Fe-Cr-Oxides: An Efficient Catalyst Activated by Visible Light for the Oxygen Evolution Reaction
Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., & Augustynski J. (2020).
Zeitschrift für Physikalische Chemie, 234(4), 633-643. [2019]
Highly Efficient Sunlight‐Driven Seawater Splitting in a Photoelectrochemical Cell with Chlorine Evolved at Nanostructured WO3 Photoanode and Hydrogen Stored as Hydride within Metallic Cathode
Jadwiszczak, M., Jakubow‐Piotrowska, K., Kedzierzawski, P., Bienkowski, K., & Augustynski, J. (2019).
Adv. Energy. Mater. 10(3), 1903213. [2019]
The photocatalytic activity of rutile and anatase TiO2 electrodes modified with plasmonic metal nanoparticles followed by photoelectrochemical measurements
Krysiak, O. A., Barczuk, P. J., Bienkowski, K., Wojciechowski, T., Augustynski, J. (2019).
Catalysis Today, 321-322, 52-58. [2019]
Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing
Jelinska, A. Bienkowski, K. Jadwiszczak, M. Pisarek, M. Strawski, M. Kurzydlowski, D. Solarska, R. & Augustynski, J. (2018).
ACS Catalysis, 8 (11), 10573-10580. [2018]
Highly Efficient and Stable Solar Water Splitting at (Na) WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst.
Sarnowska, M., Bienkowski, K., Barczuk, P. J., Solarska, R., & Augustynski, J. (2016).
Advanced Energy Materials, 6(14), 1600526. [2016]
Nanoporous WO3–Fe2O3 films; structural and photo-electrochemical characterization.
Solarska, R., Bieńkowski, K., Królikowska, A., Dolata, M., & Augustyński, J. (2014).
Functional Materials Letters, 7(06), 1440006. [2014]
To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts?
Augustynski, J., & Solarska, R. (2013).
Catalysis Science & Technology, 3(7), 1810-1814. [2013]
Highly efficient water splitting by a dual-absorber tandem cell
Brillet, J., Yum, J. H., Cornuz, M., Hisatomi, T., Solarska, R., Augustynski, J. & Sivula, K. (2012).
Nature Photonics, 6(12), 824-828. [2012]
Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films
Barczuk, P. J., Krolikowska, A., Lewera, A., Miecznikowski, K., Solarska, R., & Augustynski, J. (2013).
Electrochimica Acta, 104, 282-288. [2013]
Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst.
Bärtsch, M., Sarnowska, M., Krysiak, O., Willa, C., Huber, C., Pillatsch, L., ... & Niederberger, M. (2017).
ACS Omega, 2(8), 4531-4539. [2017]
Enhancement of WO3 performance through resonance coupling with Ag nanoparticles.
Solarska, R., Krolikowska, A., Bienkowski, K., Stefaniuk, T., & Augustynski, J. (2012).
Energy Procedia, 22, 137-146. [2012]
Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting.
Hilaire, S., Süess, M. J., Kränzlin, N., Bieńkowski, K., Solarska, R., Augustyński, J., & Niederberger, M. (2014).
Journal of Materials Chemistry A, 2(48), 20530-20537. [2014]
Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles.
Solarska, R., Bienkowski, K., Zoladek, S., Majcher, A., Stefaniuk, T., Kulesza, P. J., & Augustynski, J. (2014).
Angewandte Chemie International Edition, 53(51), 14196-14200. [2014]
Plasmon resonance-enhanced photoelectrodes and photocatalysts
Augustynski, J., Bienkowski, K., & Solarska, R. (2016)
Coordination Chemistry Reviews, 325, 116-124. [2016]
Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer
Bloor, L. G., Solarska, R., Bienkowski, K., Kulesza, P. J., Augustynski, J., Symes, M. D., & Cronin, L. (2016).
Journal of the American Chemical Society, 138(21), 6707-6710. [2016]
Communication—Continuous Monitoring of Activity of Plasmonic Gold Nanoparticles over Photooxidation Reactions Carried-Out on Au/TiO2 Photocatalysts.
Krysiak, O. A., Barczuk, P. J., Bienkowski, K., Wojciechowski, T., & Augustynski, J. (2017).
Journal of The Electrochemical Society, 164(9), H667-H669. [2017]
Photoelectrocatalytic hydrogen generation coupled with reforming of glucose into valuable chemicals using a nanostructured WO3 photoanode.
Jakubow-Piotrowska, K., Witkowski, B., Augustynski, J. (2022)
Communications Chemistry, 5, 125.
Photoelectrochemical behavior of WO3 in an aqueous methanesulfonic acid electrolyte.
Jakubow-Piotrowska, K., Kurzydlowski, D., Wrobel, P., Augustynski, J. (2022)
ACS Physical Chemistry Au, 2, 299-304.
Best practices in photoelectrochemistry
Gouda, A., Liu, T., Byers, J. C., Augustynski, J., & Santato, C. (2021).
Journal of Power Sources, 482, 228958.
Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting
Barczuk, P.J., Noworyta, K.R., Dolata, M., Jakubow-Piotrowska, K. & Augustynski, J. (2020).
Solar Energy Materials and Solar Cells, 208, 110424.
Highly efficient sunlight-driven seawater splitting in a photo-electrochemical cell with chlorine evolved at nanostructured WO3 photo-anode and hydrogen stored as hydride within metallic cathode
Jadwiszczak, M., Jakubow‐Piotrowska, K., Kedzierzawski, P., Bienkowski, K., & Augustynski, J.
Advanced Energy Materials, 10(3), 1903213
The photocatalytic activity of rutile and anatase TiO2 electrodes modified with plasmonic metal nanoparticles followed by photoelectrochemical measurements
Krysiak, O. A., Barczuk, P. J., Bienkowski, K., Wojciechowski, T., Augustynski, J. (2019).
Catalysis Today, 321-322, 52-58.
Highly Efficient Sunlight‐Driven Seawater Splitting in a Photoelectrochemical Cell with Chlorine Evolved at Nanostructured WO3 Photoanode and Hydrogen Stored as Hydride within Metallic Cathode
Jadwiszczak, M., Jakubow‐Piotrowska, K., Kedzierzawski, P., Bienkowski, K., & Augustynski, J. (2019).
Adv. Energy. Mater. 10(3), 1903213.
Ni-Fe-Cr-Oxides: An Efficient Catalyst Activated by Visible Light for the Oxygen Evolution Reaction
Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., & Augustynski J. (2020).
Zeitschrift für Physikalische Chemie, 234(4), 633-643.
Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing
Jelinska, A. Bienkowski, K. Jadwiszczak, M. Pisarek, M. Strawski, M. Kurzydlowski, D. Solarska, R. & Augustynski, J. (2018).
ACS Catalysis, 8 (11), 10573-10580.
Communication—Continuous Monitoring of Activity of Plasmonic Gold Nanoparticles over Photooxidation Reactions Carried-Out on Au/TiO2 Photocatalysts.
Krysiak, O. A., Barczuk, P. J., Bienkowski, K., Wojciechowski, T., & Augustynski, J. (2017).
Journal of The Electrochemical Society, 164(9), H667-H669.
Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst.
Bärtsch, M., Sarnowska, M., Krysiak, O., Willa, C., Huber, C., Pillatsch, L., ... & Niederberger, M. (2017).
ACS Omega, 2(8), 4531-4539.
Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer
Bloor, L. G., Solarska, R., Bienkowski, K., Kulesza, P. J., Augustynski, J., Symes, M. D., & Cronin, L. (2016).
Journal of the American Chemical Society, 138(21), 6707-6710.
Plasmon resonance-enhanced photoelectrodes and photocatalysts
Augustynski, J., Bienkowski, K., & Solarska, R. (2016)
Coordination Chemistry Reviews, 325, 116-124.
Highly Efficient and Stable Solar Water Splitting at (Na) WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst.
Sarnowska, M., Bienkowski, K., Barczuk, P. J., Solarska, R., & Augustynski, J. (2016).
Advanced Energy Materials, 6(14), 1600526.
Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting.
Hilaire, S., Süess, M. J., Kränzlin, N., Bieńkowski, K., Solarska, R., Augustyński, J., & Niederberger, M. (2014).
Journal of Materials Chemistry A, 2(48), 20530-20537.
Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles.
Solarska, R., Bienkowski, K., Zoladek, S., Majcher, A., Stefaniuk, T., Kulesza, P. J., & Augustynski, J. (2014).
Angewandte Chemie International Edition, 53(51), 14196-14200.
Nanoporous WO3–Fe2O3 films; structural and photo-electrochemical characterization.
Solarska, R., Bieńkowski, K., Królikowska, A., Dolata, M., & Augustyński, J. (2014).
Functional Materials Letters, 7(06), 1440006.
Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films
Barczuk, P. J., Krolikowska, A., Lewera, A., Miecznikowski, K., Solarska, R., & Augustynski, J. (2013).
Electrochimica Acta, 104, 282-288.
To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts?
Augustynski, J., & Solarska, R. (2013).
Catalysis Science & Technology, 3(7), 1810-1814.
Enhancement of WO3 performance through resonance coupling with Ag nanoparticles.
Solarska, R., Krolikowska, A., Bienkowski, K., Stefaniuk, T., & Augustynski, J. (2012).
Energy Procedia, 22, 137-146.
Highly efficient water splitting by a dual-absorber tandem cell
Brillet, J., Yum, J. H., Cornuz, M., Hisatomi, T., Solarska, R., Augustynski, J. & Sivula, K. (2012).
Nature Photonics, 6(12), 824-828.