Quantum Optical Devices Lab (QODL)

The Quantum Optical Devices Laboratory studies the fundamentals and applications of optical devices operating in the quantum regime. Our focus is on imaging systems, where we use quantum information theory to improve classical imaging systems and work to develop new imaging methods that exploit the full quantum information present in the optical field. We are also studying quantum nonlinear processes in atomic media to implement quantum image processing at the level of single photons. To this end, we seek to exploit giant Rydberg atoms that can mediate interactions between photons. Finally, we also use atomic media to explore imaging in the time and frequency domain, both in the ultranarrowaand and ultrafast regimes. Applications of such atomic systems range from communication, where they can operate as transmitter or receiver, to quantum sensing.

Michał Parniak-Niedojadło, PhD
email: m.parniak@cent.uw.edu.pl
phone: +48 22 55 43786
room: 00.51

Dr Michał Parniak-Niedojadło is a junior group leader in the Centre for Quantum Optical Technologies QOT. His research interests cover a range of topics in quantum optics, such as single photon detection, optical quantum information processing and communication, atomic ensembles, nonlinear optics and quantum optomechanics. Within QOT he develops experimental implementations of quantum protocols designed by the theory groups, and maintains close experimental collaboration with prof. Wojciech Wasilewski (QOT) and prof. Eugene Polzik (Niels Bohr Institute, University of Copenhagen).

 

https://scholar.google.pl/citations?user=15TPqUsAAAAJ


Title Project Leader Project period Project funding
Lokalizacja pojedynczych fotonów w czasie rzeczywistym Michał Lipka 2019 - 2023 Diamentowy Grant, MNiSW
Development of quantum imaging techniques in optical and atomic systems Michał Parniak-Niedojadło 2018 - 2020 PRELUDIUM 13, NCN
Resolution limits of spatial mode demultiplexing with noisy detection. 
Len, Y. L., Datta, C., Parniak, M., and Banaszek, K.
International Journal of Quantum Information, 18(01):1941015.
Temporal imaging for ultra-narrowband few-photon states of light.
Mazelanik, M., Leszczyński, A., Lipka, M., Parniak, M., and Wasilewski, W.
 Optica, 7(3):203–208.
Spatial spin-wave modulator for quantum memory assisted adaptive measurements.
Lipka, M., Leszczyński, A., Mazelanik, M., Parniak, M., and Wasilewski, W.
Physical Review Applied, 11(3):034049.
Superradiant parametric conversion of spin waves. 
Mazelanik, M., Leszczyński, A., Lipka, M., Wasilewski, W., and Parniak, M.
Physical Review A, 100(5):053850.
Coherent spin-wave processor of stored optical pulses.
Mazelanik, M., Parniak, M., Leszczyński, A., Lipka, M., and Wasilewski, W.
npj Quantum Information, 5:22.
Quantum optics of spin waves through ac stark modulation.
Parniak, M., Mazelanik, M., Leszczyński, A., Lipka, M., Dąbrowski, M., and Wasilewski, W.
Physical Review Letters, 122(6):063604.
Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory.
Dąbrowski, M., Mazelanik, M., Parniak, M., Leszczyński, A., Lipka, M., and Wasilewski, W.
Physical Review A, 98(4):042126.
Beating the rayleigh limit using two-photon interference. 
Parniak, M., Borówka, S., Boroszko, K., Wasilewski, W., Banaszek, K., and Demkowicz-Dobrzański, R.
Physical Review Letters, 121:250503.
There are currently no open positions